Friday, 23 June 2017

Satisfaction questionnaire

Here is a satisfaction questionnaire for house builders to get feedback, inspired by one of the questions on the form we got when we moved in. 


Congratulations on moving into your new house!

Now that you've moved in, how does it feel to be in your new house?
Great
Wonderful
Fantastic

Were the extra building charges adequately explained?
Yes, the explanation was excellent and I was in no way shocked by the unreasonable and unexpected price hike
The explanation could have been better, but I got the general idea
Perhaps you need to tell us again

How many problems have there been since you moved in to your new house?
Only about half a dozen
Ten or so
Definitely less than a hundred

When there were problems, was it easy to get in touch with us?
Yes, the phone was always picked up quickly
Yes, the email I sent didn't bounce
Yes, I knew you were there when I came round to the office, although it did seem strange that you'd turned the lights off

How many times did you have to complain about the problems before we actually did something?
Twice
Three times
I gave up complaining after the fifth time

When we finally did get in touch with you, how good a job did we do at pretending we cared?
It genuinely seemed that you didn't have anything better to do than listen to us
I think I saw you nodding
Not sure, you were too busy looking at your phone

Did we tell you about our other satisfied customers?
Yes, I heard about them several times
You told us about one satisfied customer several times.
You have other satisfied customers?

(Note: Clicking these buttons will make no difference to anything, much like the satisfaction surveys you are often asked to fill out!)

Friday, 16 June 2017

Just planning ahead to make a battery charger for electric cars

"Are we nearly there yet?" the kids ask from the back seat.

"Yes we'll be there soon," I say, and I'm sure we will be. Soon is always too late for some but takes others by surprise.  

So we are half way through the ten-year contract with the Chubu Electric Power Company, and when it ends there is almost no chance that we will be paid as much as the 48 yen per kWh we are now getting. The tarriffs have been steadily falling each year, as was originally planned. Solar panel prices have also been falling, so the calculation of return on investment remains a little short of the ten-year contract that electricity companies are tied into for domestic installations of less than 10 kilowatts. Installations over 10kW are considered commercial, and they are tied into a lower price for twenty years. The prices of solar panels, as with all commodities, is somewhat arbitrary, and it is not completely clear whether the government is deciding the feed-in-tarriff rate based on the price of the panels, or wether the price of the panels is being set so that the feed-in-tarriff will pay the cost back. 
   
I think this graph shows that costs of solar installations over ten years met the residential electricity rates in the middle of 2014. At that point​, in theory at least,​ incentives become moot since it's cheaper for people to buy their electricity in the form or solar panels than it is to buy electricity company​. Of course not everyone has the capital to be able to do that, but the feed-in-tarriff was still above the price people were paying for electricity. According to solar partners.jp, the amount you get for selling electricity is dropping by 2 or 3 yen per kWh per year. You could sell 1kWh for up to 33 yen in 2016, and it will be 30, 28 ​in 2018​ and 26 ​in 2019. So if I'm lucky and still able to get a new contract with my old panels, I may get over 25 yen per kWh when my contract runs out.

At 25 yen per kWh it's still worth my while to connect to the grid. My income from the panels will halve, but it will still be three times more than I pay for electricity. 

A worse scenario is that I get paid some market value for power generation, which could be around 11 yen. ​It may be a fixed rate or a floating rate. The worst scenario is that they don't pay me anything, but just expect that power to flow into their grid. I think that is very unlikely.

There has apparently been a deregulation of the electricity market, which in theory means I can shop around for the highest bidder for my electricity. Japan For Sustainability has an interesting story here about Renewable Energy Hopes and Hurdles Amid Full Liberalization of Japan's Electricity Market. "In April 2016, Japan woke up to a fully liberalized electricity market" the article begins, although even by ​June 2017 I can't help feeling that most people are still oblivious to this new reality. ​

Increased competition tends to bring down prices, which may be bad news for people trying to sell​ electricity​. You can find out here whether changing your electric company will give you cheaper bills: https://enechange.jp/try. It's easy to find companies that will sell you electricity, but it's harder to find those that will buy it off you, unless you have larger sources. I searched around the website for https://ne-greena.jp, who offer 100% renewable energy, but ​they are not interested in buying renewable energy​ from my roof!

At some value less than 20 yen per kWh, it stops making sense for me to pay the electricity company the monthly flat rate to connect to them, since we​ make more electricity than ​we​ use. The big question going forward for anyone investing in renewable energy is how much electricity will cost. Jay Carlis claimed in 2013 that electricity prices are not going down and he​re's a Guardian article from 2011 about electric cars taking over.

More information:

Monday, 12 June 2017

10 tips to design Near Zero Energy Building

Allessandro Merigo, architect from Lumezzane, Italy, has written ten tips to design Nearly Zero Energy Buildings (NZEBs). In Italy all public buildings will be near zero energy from 2018, and all other construction from 2020. 

Read about refurbishing buildings too

1. Start with the shell 
2. Use appropriate software
3. Input real climate data
4. Avoid thermal bridges
5. Ensure air tightness
6. Think about air exchange
7. Reduce HVAC
8. Use renewable energy
9. Check the budget
10. Collaboration is the key of success

Note that only one of these is about producing energy, and seven are about reducing energy losses. 

Friday, 9 June 2017

Do solar panels have a dark side?

While browsing through the battlefield of prejudices and preconceptions that is the internet, I came across the graphic below, proudly showing how much better coal and oil are than solar power. This was a retort to Bernie Sanders boasting about the great contribution solar power was making to job creation. They cite the broken window fallacy, which is the mistaken belief that breaking a window is good for the economy, because of all the work it for glaziers, carpenters and painters. I can't help feeling that the broken window that this metaphor really applies to is the global environment, which the economy has been breaking for the past couple of hundred years, and has yet to seriously think about repairing. ​Anyway, the author's conclusion was ​that it takes 79 solar workers to produce the same amount of electric power as one coal worker produces.
Of course, he is missing the fact that almost all coal workers' 2016 efforts have now been burnt, while most of the solar jobs were installing production capacity. If all of these workers stopped for 2017, then coal and natural gas would produce zero kWh. Solar, on the other hand, would produce more or less the same amount. In fact those panels installed in 2016 will still be producing power for at least the next quarter century. In addition, many of the jobs in the solar industry are leading directly or indirectly to increasingly efficient solar panels and better ways of using them, so when those panels eventually need replacing, their replacements will be more efficient, cheaper, lighter, less energy intensive and with a lower environmental impact in their production and disposal.

This guy has a similar story, and once again it seems to be coming from the right, and firmly putting renewable energy on the left wing, and the left field. "Our lives are improved by finding ways to reduce the amount of labor in them, not increase it​," they both claim​.

​Of course, a lot of labour-reducing measures have not lead to a reduction in labour but an increase. In the 1930s John Maynard Keynes predicted that ​his grandchildren would be working 15 hour weeks. He didn't actually have any grandchildren, so that part of his prediction was wrong to start with. But his sister's grandchildren, interviewed here and now retired, worked a lot more than fifteen hours a week. In fact one claims it was more like fifteen hours a day. Work has expanded to fill the available time. Computers have not yet liberated the masses from work, but have enslaved millions behind their keyboards. Cheap products have just allowed people to buy more. One of the​noble aims of the industrial ​revolution was to provide every man with his own shirt, but it has just led to many overflowing wardrobes. ​A kind of Jevons paradox exists here too, as we spend all our time using these labour saving devices. But I digress from the solar issue.

​The bottom line is, of course, that solar panels do require work, energy and resources in their production, and looking backwards it's difficult to argue that they are using less carbon. Looking forward there is a different picture, and solar power and other renewables make zero-carbon energy production possible. Burning fossil fuels does not. There is no reason to ever build another coal plant in the United States​, or anywhere else for that matter.